摩尔投票法

概念

提问

给定一个int型数组,找出该数组中 出现次数最多的int值

解决方案

遍历该数组,统计每个int值出现次数,再遍历该集合,取出出现次数最大的int值。

这算是一个比较经典的解决办法,其中可能会用到Map来做统计。如果不使用Map,则时间复杂度会超过线性复杂度。除此之外,也没有什么特别好的办法。

今天在leetcode上遇到这样一道题目,

提问

给定一个int型数组,找出该数组中出现次数大于数组长度一半的int值。

解决方案

遍历该数组,统计每个int值出现次数,再遍历该集合,找出出现次数大于数组长度一半的int值。

同样的,该解决办法也要求使用Map,否则无法达到线性的时间复杂度。

那么对于这个问题,有没有什么不使用Map的线性算法呢?

答案就是今天我们要提到的 摩尔投票法。利用该算法来解决这个问题,我们可以达到线性的时间复杂度以及常量级的空间复杂度。

首先我们 注意到这样一个现象: 在任何数组中,出现次数大于该数组 长度一半的值只能有一个

通过数学知识,我们可以证明它的正确性,但是这并不在我们这篇博客里涉及。

摩尔投票法的基本思想很简单,在每一轮投票过程中,从数组中找出一对不同的元素,将其从数组中删除。这样不断的删除直到无法再进行投票,如果数组为空,则没有任何元素出现的次数超过该数组长度的一半。如果只存在一种元素,那么这个元素则可能为目标元素。

那么有没有可能出现最后有两种或两种以上元素呢?根据定义,这是不可能的,因为如果出现这种情况,则代表我们可以继续一轮投票。因此,最终只能是剩下零个或一个元素。

在算法执行过程中,我们使用常量空间实时记录一个候选元素c以及其出现次数 $f(c)$,c即为当前阶段出现次数超过半数的元素。根据这样的定义,我们也可以将摩尔投票法看作是一种动态规划算法。

程序开始之前,元素c为空,$f(c)=0$。遍历数组A:

  • 如果f(c)为0,表示截至到当前子数组,并没有候选元素。也就是说之前的遍历过程中并没有找到超过半数的元素。那么,如果超过半数的元素c存在,那么c在剩下的子数组中,出现次数也一定超过半数。因此我们可以将原始问题转化为它的子问题。此时c赋值为当前元素, 同时f(c)=1。
  • 如果当前元素 A[i] == c, 那么 $f(c) += 1$。(没有找到不同元素,只需要把相同元素累计起来)
  • 如果当前元素 A[i] == c, 那么 $f(c) += 1$。(没有找到不同元素,只需要把相同元素累计起来)
  • 如果当前元素 A[i] != c,那么 $f(c) -= 1$ (相当于删除1个c),不对A[i]做任何处理(相当于删除A[i])

如果遍历结束之后,f(c)不为0,则找到可能元素。

再次遍历一遍数组,记录c真正出现的次数,从而验证c是否真的出现了超过半数。上述算法的时间复杂度为O(n),而由于并不需要真的删除数组元素,我们也并不需要额外的空间来保存原始数组,空间复杂度为O(1)。

看java代码示例,为了保证每一步骤的清晰性,代码没有经过优化。

/**
 * 算法基础:摩尔投票法
 * @param nums
 * @return
 */  
public int majorityElement(int[] nums) {  

    int majority = -1;  

    int count = 0;  

    for (int num : nums) {  
        if (count == 0) {  
            majority = num;  
            count++;  
        } else {  
            if (majority == num) {  
                count++;  
            } else {  
                count--;  
            }  
        }  
    }  

    int counter = 0;  
    if (count <= 0) {  
        return -1;  
    } else {  
        for (int num : nums) {  
            if (num == majority) counter ++;  
        }  
    }  

    if (counter > nums.length / 2) {  
        return majority;  
    }  

    return -1;  
}  

其实这样的算法也可以衍生到其它频率的问题上,比如说,找出所有出现次数大于n/3的元素。同样可以以线性时间复杂度以及常量空间复杂度来实现。

常见解题思路

  • 摩尔投票法。该算法用于1/2情况,它说:“在任何数组中,出现次数大于该数组长度一半的值只能有一个。”
    1. 数组中第一位数作为默认的候选人(cand_num)
    2. 依次向后遍历
    3. 当出现相同的数(cand_num) 则 投票数 count +1
    4. 当出现不同的数 则投票(count_num) 投票数 count -1
    5. 当 count ==0 ,则跟换候选人,并 count 重制为 1
    6. 遍历完后 count_num 则为最终答案